Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Phytother Res ; 38(3): 1555-1573, 2024 Mar.
Article En | MEDLINE | ID: mdl-38281735

Anti-inflammatory and immune suppressive agents are required to moderate hyper-activation of lymphocytes under disease conditions or organ transplantation. However, selective disruption of mitochondrial redox has not been evaluated as a therapeutic strategy for suppression of T-cell-mediated pathologies. Using mitochondrial targeted curcumin (MitoC), we studied the effect of mitochondrial redox modulation on T-cell responses by flow cytometry, transmission electron microscopy, transcriptomics, and proteomics, and the role of Nrf2 was studied using Nrf2- /- mice. MitoC decreased mitochondrial TrxR activity, enhanced mitochondrial ROS (mROS) production, depleted mitochondrial glutathione, and suppressed activation-induced increase in mitochondrial biomass. This led to suppression of T-cell responses and metabolic reprogramming towards Treg differentiation. MitoC induced nuclear translocation and DNA binding of Nrf2, leading to upregulation of Nrf2-dependent genes and proteins. MitoC-mediated changes in mitochondrial redox and modulation of T-cell responses are abolished in Nrf2- /- mice. Restoration of mitochondrial thiols abrogated inhibition of T-cell responses. MitoC suppressed alloantigen-induced lymphoblast formation, inflammatory cytokines, morbidity, and mortality in acute graft-versus-host disease mice. Disruption of mitochondrial thiols but not mROS increase inculcates an Nrf2-dependent immune-suppressive disposition in T cells for the propitious treatment of graft-versus-host disease.


Curcumin , Curcumin/analogs & derivatives , Graft vs Host Disease , Animals , Mice , Curcumin/pharmacology , NF-E2-Related Factor 2/metabolism , T-Lymphocytes , Disease Models, Animal , Graft vs Host Disease/metabolism , Graft vs Host Disease/pathology , Sulfhydryl Compounds/metabolism , Sulfhydryl Compounds/pharmacology
2.
Eur J Med Chem ; 258: 115598, 2023 Oct 05.
Article En | MEDLINE | ID: mdl-37406384

Combinatorial inhibition of Topoisomerase 1 (TOP1) and Poly (ADP-ribose) polymerase 1 (PARP1) is an attractive therapeutic strategy which is under active investigation to address chemoresistance to TOP1 inhibitors. However, this combinatorial regimen suffers from severe dose limiting toxicities. Dual inhibitors often offer significant advantages over combinatorial therapies involving individual agents by minimizing toxicity and providing conducive pharmacokinetic profiles. In this study, we have designed, synthesized and evaluated a library of 11 candidate conjugated dual inhibitors for PARP1 and TOP1, named as DiPT-1 to DiPT-11. Our extensive screening showed that one of the hits i.e.DiPT-4 has promising cytotoxicity profile against multiple cancers with limited toxicities towards normal cells. DiPT-4 induces extensive DNA double stand breaks (DSBs), cell cycle arrest and apoptosis in cancer cells. Mechanistically, DiPT-4 has the propensity to bind catalytic pockets of TOP1 and PARP1, leading to significant inhibition of both TOP1 and PARP1 at in vitro and cellular level. Interestingly, DiPT-4 causes extensive stabilization of TOP1-DNA covalent complex (TOP1cc), a key lethal intermediate associated with induction of DSBs and cell death. Moreover, DiPT-4 inhibited poly (ADP-ribosylation) i.e. PARylation of TOP1cc, leading to long lived TOP1cc with a slower kinetics of degradation. This is one of the important molecular processes which helps in overcoming resistance in cancer in response to TOP1 inhibitors. Together, our investigation showed DiPT-4 as a promising dual inhibitor of TOP1 and PARP1, which may have the potential to offer significant advantages over combinatorial therapy in clinical settings.


Neoplasms , Ribose , Humans , Poly (ADP-Ribose) Polymerase-1 , Topoisomerase I Inhibitors/pharmacology , DNA , Neoplasms/drug therapy
...